Part Number Hot Search : 
SM220 P80NF10 GP30K N60S5 ICS90C65 00LVEL TEVAL 2F5081
Product Description
Full Text Search
 

To Download V23990-P629-L49-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet flow boost 0 1200 v / 40 a high efficiency dual boost ultra fast switching frequency low inductance layout 1200v igbt and 1200v sic diode solar inverter v23990p629l48pm v23990p629l48ypm v23990p629l49pm v23990p629l49ypm t j =25c, unless otherwise specified parameter symbol value unit v rrm 1600 v t jmax 150 c input boost igbt (t1,t2) collectoremitter break down voltage v ces 1200 v t j 150c v ce <= v ces gateemitter peak voltage v ge 20 v t sc t j 150c 10 s v cc v ge =15v 800 v maximum junction temperature t jmax 175 c pulsed collector current power dissipation turn off safe operating area a i 2 t i fsm a t j = t jmax a 2 s 200 t j =150c t p =10ms 200 a w features flow 0 housing target applications schematic condition bypass diode (d7,d8) types maximum ratings 41 113 w a 80 i c t j = t jmax dc collector current a 120 t s =80c t p limited by t jmax t j = t jmax t s =80c repetitive peak reverse voltagemaximum junction temperature t j = t jmax p tot mean forward currentsurge (nonrepetitive) forward current power dissipation i 2 t value i fav short circuit ratings p tot i crm t s =80c 34 t s =80c 42 copyright vincotech 1 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet t j =25c, unless otherwise specified parameter symbol value unit condition maximum ratings input boost fwd (d1,d2,d4,d5)input boost inv. diode (d9,d10) thermal properties insulation properties t=2s dc voltage 4000 v min 12,7 mm 12mm housing with solder pins min 9,55 mm 12mm housing with pressfit pins min 9,57 mm 17mm housing min 12,7 mm half sine wave 1200 t j = t jmax t j =25c t j = t jmax t j = t jmax c t s =80c 50 aa t p =10ms peak repetitive reverse voltagerepetitive peak forward current t p limited by t jmax v rrm mean forward current t j = t jmax w v c a a p tot t jmax 6 t s =80c 26 1200 maximum junction temperature p tot power dissipation repetitive peak forward current v rrm 175 w t jmax i frm 150 power dissipation maximum junction temperature i fav i frm 40+( t jmax 25) c storage temperature t stg 40+125 c clearance insulation voltagecreepage distance t op operation temperature under switching conditionclearance clearance t s =80c 6 a v i fsm t s =80c 18 i fav 92 surge (nonrepetitive) forward current peak repetitive reverse voltagemean forward current 52 copyright vincotech 2 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j [c] min typ max 25 0,7 1,15 1,4 125 1,11 25 0,92 125 0,82 25 0,009 125 0,012 25 0,05 125 thermal resistance junction to sink r th(j-s) 1,67 25 5,2 5,8 6,4 150 25 1,7 2,1 2,6 150 2,48 25 0,25 15025 120 150 none 25 35 150 34,2 25 26,4 150 27,2 25 372,2 150 430,8 25 9,4 150 69,8 25 2,061 150 2,19 25 1,78 150 3,039 thermal resistance junction to sink r th(j-s) 0,84 25 1 1,46 2 150 1,8 25 300 150 25 7,78 150 8,1 25 9,5 150 9,5 25 0,04 150 0,04 25 0,002 150 0,002 25 2480 150 2790 thermal resistance junction to sink r th(j-s) 1,88 25 1,65 125 1,58 thermal resistance junction to sink r th(j-s) phasechange material ? =3,4w/mk 2,72 k/w 40 v 3 10 15 020 1515 r goff =16 r gon =16 0 v ge = v ce v cesat phasechange material ? =3,4w/mk e off r gint q g turnoff energy loss t d(off) turnon energy loss fall time t f e on rise time collectoremitter saturation voltage i ges i ces input boost igbt (t1,t2) v ge(th) t d(on) collectoremitter cutoff gateemitter leakage current i rrm v f i rm f=1mhz c rss c oss c ies f=1mhz input boost inv. diode (d9,d10) peak recovery currentreverse recovery charge peak rate of fall of recovery current reverse recovered energy reverse recovery time reverse leakage current q rr gate emitter threshold voltage t r forward voltage input capacitanceoutput capacitance reverse transfer capacitance input boost fwd (d1,d2,d4,d5) gate charge turnon delay time integrated gate resistorturnoff delay time i r reverse current bypass diode (d7,d8) 1500 25 slope resistance (for power loss calc. only) 25 characteristic values forward voltagethreshold voltage (for power loss calc. only) v f value conditions k/w v to r t 25 phasechange material ? =3,4w/mk vv ma 0,001540 40 2525 1200700 phasechange material ? =3,4w/mk r gon =16 e rec ( d i rf /d t ) max t rr 70025 0 40 diode forward voltage v f a ns c ma k/w na mws nc ns a/s v pf k/w a mws vv 2360 125 12000 230 25 192 copyright vincotech 3 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j [c] min typ max characteristic values value conditions 25 k 21,5 3,5 +4,5 4,5 25 mw/k % mw 210 power dissipation constant power dissipation p thermistor r/r r 100 =1486 rated resistance r deviation of r100vincotech ntc reference bvalue b(25/50) bvalue b(25/100) kk 3964 25 f 3884 25 25 25 copyright vincotech 4 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 1 boost igbt figure 2 boost igbt typical output characteristics typical output characteristics i c = f( v ce ) i c = f( v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 boost igbt figure 4 boost fwd typical transfer characteristics typical diode forward current as i c = f( v gs ) a function of forward voltage i f = f( v f ) at at t p = 250 s t j = 25 / 125 c t j = 25 / 125 c v ce = 10 v t p = 250 s input boost 0 10 20 30 40 0 1 2 3 4 5 v f (v) i f (a) 0 10 20 30 40 0 2 4 6 8 10 12 v ge (v) i c (a) 0 20 40 60 80 100 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) 0 20 40 60 80 100 0,0 1,0 2,0 3,0 4,0 5,0 v ce (v) i c (a) copyright vincotech 5 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 5 boost igbt figure 6 boost igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f( i c ) e = f( r g ) with an inductive load at with an inductive load at t j = 25 / 125 c t j = 25 / 125 c v ce = 700 v v ce = 700 v v ge = 15 v v ge = 15 v r gon = 16 i d = 40 a r goff = 16 figure 7 boost fwd figure 8 boost fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f( i c ) e rec = f( r g ) r (k/w) r (k/w) with an inductive load at with an inductive load at t j = 25 / 125 c t j = 25 / 125 c v ce = 700 v v ce = 700 v v ge = 15 v v ge = 15 v r gon = 16 i c = 40 a r goff = 16 input boost e rec high t e rec low t 0 0,002 0,004 0,006 0,008 0 20 40 60 80 i c (a) e (mws) e rec high t e rec low t 0 0,002 0,004 0,006 0,008 0 16 32 48 64 80 r g ( w ww w ) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 20 40 60 80 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 10 0 16 32 48 64 80 r g ( w ww w ) e (mws) copyright vincotech 6 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 9 boost igbt figure 10 boost igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f( i c ) t = f( r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 700 v v ce = 700 v v ge = 15 v v ge = 15 v r gon = 16 i c = 40 a r goff = 16 figure 11 boost fwd figure 12 boost fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f( i c ) t rr = f( r gon ) at at t j = 25 / 125 c t j = 25 / 125 c v ce = 700 v v r = 700 v v ge = 15 v i f = 40 a r gon = 16 v ge = 15 v input boost t doff t f t don t r 0,001 0,01 0,1 1 10 0 20 40 60 80 i c (a) t ( m s) t doff t f t don t r 0,001 0,01 0,1 1 10 0 16 32 48 64 80 r g (  ) t ( m s) t rr high t t rr low t 0 0,004 0,008 0,012 0,016 0,02 0 16 32 48 64 80 r gon (  ) t rr ( m s) t rr high t t rr low t 0 0,004 0,008 0,012 0,016 0,02 0 20 40 60 80 i c (a) t rr ( m s) copyright vincotech 7 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 13 boost fwd figure 14 boost fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f( i c ) q rr = f( r gon ) atat at t j = 25 / 125 c t j = 25 / 125 c v ce = 700 v v r = 700 v v ge = 15 v i f = 40 a r gon = 16 v gs = 15 v figure 15 boost fwd figure 16 boost fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f( i c ) i rrm = f( r gon ) at at t j = 25 / 125 c t j = 25 / 125 c v ce = 700 v v r = 700 v v ge = 15 v i f = 40 a r gon = 16 v ge = 15 v input boost i rrm high t i rrm low t 0 4 8 12 16 20 0 16 32 48 64 80 r gon (  ) i rrm (a) q rr high t q rr low t 0,00 0,02 0,04 0,06 0,08 0 16 32 48 64 80 r gon ( w ) q rr ( m c) i rrm high t i rrm low t 0 4 8 12 16 20 0 20 40 60 80 i c (a) i rrm (a) q rr high t q rr low t 0,00 0,02 0,04 0,06 0,08 0 20 40 60 80 i c (a) q rr ( c) copyright vincotech 8 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 17 boost fwd figure 18 boost fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor d i 0 /d t ,d i rec /d t = f( i c ) d i 0 /d t ,d i rec /d t = f( r gon ) at at t j = 25 / 125 c t j = 25 / 125 c v ce = 700 v v r = 700 v v ge = 15 v i f = 40 a r gon = 16 v ge = 15 v figure 19 boost igbt figure 20 boost fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z th(j-s) = f( t p ) z th(j-s) = f( t p ) at at d = t p / t d = t p / t r th(j-s) = 0,84 k/w r th(j-s) = 1,88 k/w igbt thermal model values fwd thermal model values r (k/w) (s) r (k/w) (s) 1,07e01 1,41e+00 5,58e02 6,96e+00 3,91e01 1,88e01 1,47e01 5,43e01 2,23e01 5,60e02 8,94e01 7,92e02 9,23e02 1,12e02 4,33e01 1,33e02 2,99e02 1,11e03 2,94e01 3,03e03 0,00e+00 0,00e+00 5,99e02 6,32e04 input boost 0 2000 4000 6000 8000 10000 0 16 32 48 64 80 r gon ( w ) di rec / dt (a/ m s) di 0 /dt di rec /dt t p (s) z th(j-s) (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 t p (s) z th(j-s) (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 0 1000 2000 3000 4000 5000 0 20 40 60 80 i c (a) di rec / dt (a/ m s) di 0 /dt di rec /dt copyright vincotech 9 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 21 boost igbt figure 22 boost igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i c = f( t s ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 23 boost fwd figure 24 boost fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i f = f( t s ) at at t j = 175 oc t j = 175 oc input boost 0 50 100 150 200 0 50 100 150 200 ts ( o c) p tot (w) 0 15 30 45 60 0 50 100 150 200 ts ( o c) i c (a) 0 20 40 60 80 100 0 50 100 150 200 t s ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 t s ( o c) i f (a) copyright vincotech 10 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 25 boost igbt figure 26 boost igbt safe operating area as a function gate voltage vs gate charge of collectoremitter voltage i c = f( v ce ) v ge = f( q g ) at at d = single pulse i c = 40 a t s = 80 oc v ge = 15 v t j = t jmax oc figure 27 output inverter igbt figure 28 output inverter igbt short circuit withstand time as a function of typical short circuit collector current as a function of gateemitter voltage gateemitter voltage t sc = f( v ge ) v ge = f( q ge ) at at v ce = 1200 v v ce 1200 v t j 150 oc t j = 150 oc input boost v ce (v) i c (a) 10 3 10 3 10 0 10us 100us 1ms 10ms 100ms dc 10 2 10 1 10 0 10 2 10 1 10 -1 0 2,5 5 7,5 10 12,5 15 17,5 0 25 50 75 100 125 150 175 200 qg (nc) v ge (v) 240v 960v 0 2,5 5 7,5 10 12,5 15 17,5 12 13 14 15 16 17 18 19 20 v ge (v) t sc (s) 0 50 100 150 200 250 300 350 12 13 14 15 16 17 18 19 20 v ge (v) i c (sc) copyright vincotech 11 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 29 igbt reverse bias safe operating area i c = f( v ce ) at t j = t jmax 25 oc r gon = 16 r goff = 16 input boost 0 20 40 60 80 100 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce max i c module i c chip copyright vincotech 12 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 1 input boost inv. diode figure 2 input boost inv. diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f( v f ) z th(j-s) = f( t p ) at at t j = 25 / 125 c d = t p / t t p = 250 s r th(j-s) = 2,72 k/w figure 3 input boost inv. diode figure 4 input boost inv. diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i f = f( t s ) at at t j = 150 oc t j = 150 oc input boost inv. diode 0 5 10 15 20 0 1 2 3 4 v f (v) i f (a) 0 15 30 45 60 0 30 60 90 120 150 t s ( o c) p tot (w) 0 2 4 6 8 0 30 60 90 120 150 t s ( o c) i f (a) tp (s) zth(j-s) (k/w) d=0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 10 1 10 0 10 -1 10 -2 10 4 10 3 10 2 10 1 10 0 10 1 10 5 copyright vincotech 13 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 1 bypass diode figure 2 bypass diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f( v f ) z th(j-s) = f( t p ) at at t j = 25 / 125 c d = t p / t t p = 250 s r th(j-s) = 1,67 k/w figure 3 bypass diode figure 4 bypass diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f( t s ) i f = f( t s ) at at t j = 150 oc t j = 150 oc bypass diode 0 15 30 45 60 75 0 0,5 1 1,5 2 v f (v) i f (a) t p (s) z th(j-s) (k/w) 10 1 10 0 10 1 10 2 10 4 10 3 10 2 10 1 10 0 10 1 10 5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0,000 0 20 40 60 80 100 0 30 60 90 120 150 t s ( o c) p tot (w) 0 15 30 45 60 0 30 60 90 120 150 t s ( o c) i f (a) copyright vincotech 14 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 1 thermistor typical ntc characteristicas a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r (  ) copyright vincotech 15 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet t j 125 c r gon 16 r goff 16 figure 1 boost igbt figure 2 boost igbt turnoff switching waveforms & definition of t doff , t eoff turnon switching waveforms & definition of t don , t eon ( t e off = integrating time for e off ) ( t e on = integrating time for e on ) v ge (0%) = 0 v v ge (0%) = 0 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 40 a i c (100%) = 40 a t doff = 0,43 s t don = 0,034 s t e off = 0,64 s t e on = 0,230 s figure 3 boost igbt figure 4 boost igbt turnoff switching waveforms & definition of t f turnon switching waveforms & definition of t r v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 40 a i c (100%) = 40 a t f = 0,07 s t r = 0,027 s switching definitions general conditions == = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 1 time (s) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 3% -25 0 25 50 75 100 125 2,9 2,98 3,06 3,14 3,22 3,3 3,38 time(s) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0,25 0,33 0,41 0,49 0,57 0,65 time (s) % v ce i c t f i c 10% i c 90% -25 0 25 50 75 100 125 2,9 2,98 3,06 3,14 3,22 3,3 time(s) % tr v ce i c copyright vincotech 16 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 5 boost igbt figure 6 boost igbt turnoff switching waveforms & definition of t eoff turnon switching waveforms & definition of t eon p off (100%) = 28,10 kw p on (100%) = 28,10 kw e off (100%) = 3,04 mj e on (100%) = 2,19 mj t e off = 0,64 s t e on = 0,23 s figure 7 boost fwd turnoff switching waveforms & definition of t rr v d (100%) = 700 v i d (100%) = 40 a i rrm (100%) = 8 a t rr = 0,01 s switching definitions i c 1% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (s) % p off e off t eoff v ce 3% v ge 10% -25 0 25 50 75 100 125 2,95 3,01 3,07 3,13 3,19 3,25 3,31 time(s) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -50 -25 0 25 50 75 100 125 3,02 3,035 3,05 3,065 3,08 3,095 3,11 3,125 time(s) % i d v d fitted copyright vincotech 17 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet figure 8 boost fwd figure 9 boost fwd turnon switching waveforms & definition of t qrr turnon switching waveforms & definition of t erec ( t q rr = integrating time for q rr ) ( t erec = integrating time for e rec ) i d (100%) = 40 a p rec (100%) = 28,10 kw q rr (100%) = 0,04 c e rec (100%) = 0,002 mj t q rr = 0,018 s t e rec = 0,018 s switching definitions t qrr -50 0 50 100 150 3,05 3,06 3,07 3,08 3,09 3,1 time(s) % i d q rr -50 0 50 100 150 200 3,06 3,07 3,08 3,09 3,1 time(s) % p rec e rec t erec copyright vincotech 18 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet in datamatrix as in packaging barcode as 12mm housing with solder pins p629l48 p629l48 12mm housing with pressfit pins p629l48y p629l48y 17mm housing with solder pins p629l49 p629l49 17mm housing with pressfit pins p629l49y p629l49y pin x y 1 0 22,5 2 2,9 22,5 3 8,3 22,5 4 10,8 22,5 5 19,6 22,5 6 22,1 22,5 7 29,1 22,5 8 32 22,5 9 33,5 17,8 10 33,5 15,3 11 33,5 7,2 12 33,5 4,7 13 32 0 14 29,1 0 15 22,1 0 16 19,6 0 17 10,8 0 18 8,3 0 19 2,9 0 20 0 0 21 0 8 22 0 14,5 v23990p629l49ypm v23990p629l48pmv23990p629l48ypm pin table pinout ordering code & marking ordering code and marking outline pinout version v23990p629l49pm outline ordering code copyright vincotech 19 11 sep. 2015 / revision 3
v23990p629l48pm v23990p629l48ypmv23990p629l49pm v23990p629l49ypm datasheet 135 disclaimerlife support policy as used herein: handling instruction handling instructions for flow 0 packages see vincotech.com website. packaging instruction standard packaging quantity (spq) >spq standard


▲Up To Search▲   

 
Price & Availability of V23990-P629-L49-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X